Copied to
clipboard

G = C2×C337D4order 432 = 24·33

Direct product of C2 and C337D4

direct product, metabelian, supersoluble, monomial

Aliases: C2×C337D4, C62.114D6, (S3×C6)⋊19D6, (C3×C6)⋊10D12, (C32×C6)⋊7D4, C3322(C2×D4), (S3×C62)⋊5C2, C3⋊Dic318D6, C62(C3⋊D12), C3217(C2×D12), C61(C327D4), (C32×C6).59C23, (C3×C62).30C22, (S3×C2×C6)⋊7S3, C6.69(C2×S32), D66(C2×C3⋊S3), (C2×C6).43S32, C33(C2×C3⋊D12), (C3×C6)⋊7(C3⋊D4), (S3×C3×C6)⋊19C22, (C6×C3⋊Dic3)⋊8C2, C31(C2×C327D4), (C2×C3⋊Dic3)⋊11S3, C22.15(S3×C3⋊S3), C6.22(C22×C3⋊S3), C3212(C2×C3⋊D4), (C22×S3)⋊3(C3⋊S3), (C3×C6).148(C22×S3), (C3×C3⋊Dic3)⋊14C22, (C2×C33⋊C2)⋊9C22, (C22×C33⋊C2)⋊1C2, C2.22(C2×S3×C3⋊S3), (C2×C6).24(C2×C3⋊S3), SmallGroup(432,681)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C2×C337D4
C1C3C32C33C32×C6S3×C3×C6C337D4 — C2×C337D4
C33C32×C6 — C2×C337D4
C1C22

Generators and relations for C2×C337D4
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf=b-1, cd=dc, ece-1=fcf=c-1, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 3000 in 452 conjugacy classes, 92 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, C32, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×C6, C33, C3×Dic3, C3⋊Dic3, S3×C6, S3×C6, C2×C3⋊S3, C62, C62, C62, C2×D12, C2×C3⋊D4, S3×C32, C33⋊C2, C32×C6, C32×C6, C3⋊D12, C6×Dic3, C2×C3⋊Dic3, C327D4, S3×C2×C6, C22×C3⋊S3, C2×C62, C3×C3⋊Dic3, S3×C3×C6, S3×C3×C6, C2×C33⋊C2, C2×C33⋊C2, C3×C62, C2×C3⋊D12, C2×C327D4, C337D4, C6×C3⋊Dic3, S3×C62, C22×C33⋊C2, C2×C337D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, D12, C3⋊D4, C22×S3, S32, C2×C3⋊S3, C2×D12, C2×C3⋊D4, C3⋊D12, C327D4, C2×S32, C22×C3⋊S3, S3×C3⋊S3, C2×C3⋊D12, C2×C327D4, C337D4, C2×S3×C3⋊S3, C2×C337D4

Smallest permutation representation of C2×C337D4
On 72 points
Generators in S72
(1 40)(2 37)(3 38)(4 39)(5 46)(6 47)(7 48)(8 45)(9 18)(10 19)(11 20)(12 17)(13 35)(14 36)(15 33)(16 34)(21 25)(22 26)(23 27)(24 28)(29 58)(30 59)(31 60)(32 57)(41 62)(42 63)(43 64)(44 61)(49 71)(50 72)(51 69)(52 70)(53 66)(54 67)(55 68)(56 65)
(1 29 62)(2 63 30)(3 31 64)(4 61 32)(5 52 27)(6 28 49)(7 50 25)(8 26 51)(9 56 33)(10 34 53)(11 54 35)(12 36 55)(13 20 67)(14 68 17)(15 18 65)(16 66 19)(21 48 72)(22 69 45)(23 46 70)(24 71 47)(37 42 59)(38 60 43)(39 44 57)(40 58 41)
(1 26 15)(2 16 27)(3 28 13)(4 14 25)(5 63 66)(6 67 64)(7 61 68)(8 65 62)(9 58 69)(10 70 59)(11 60 71)(12 72 57)(17 50 32)(18 29 51)(19 52 30)(20 31 49)(21 39 36)(22 33 40)(23 37 34)(24 35 38)(41 45 56)(42 53 46)(43 47 54)(44 55 48)
(1 15 26)(2 16 27)(3 13 28)(4 14 25)(5 63 66)(6 64 67)(7 61 68)(8 62 65)(9 69 58)(10 70 59)(11 71 60)(12 72 57)(17 50 32)(18 51 29)(19 52 30)(20 49 31)(21 39 36)(22 40 33)(23 37 34)(24 38 35)(41 56 45)(42 53 46)(43 54 47)(44 55 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 38)(2 37)(3 40)(4 39)(5 10)(6 9)(7 12)(8 11)(13 22)(14 21)(15 24)(16 23)(17 48)(18 47)(19 46)(20 45)(25 36)(26 35)(27 34)(28 33)(29 43)(30 42)(31 41)(32 44)(49 56)(50 55)(51 54)(52 53)(57 61)(58 64)(59 63)(60 62)(65 71)(66 70)(67 69)(68 72)

G:=sub<Sym(72)| (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,18)(10,19)(11,20)(12,17)(13,35)(14,36)(15,33)(16,34)(21,25)(22,26)(23,27)(24,28)(29,58)(30,59)(31,60)(32,57)(41,62)(42,63)(43,64)(44,61)(49,71)(50,72)(51,69)(52,70)(53,66)(54,67)(55,68)(56,65), (1,29,62)(2,63,30)(3,31,64)(4,61,32)(5,52,27)(6,28,49)(7,50,25)(8,26,51)(9,56,33)(10,34,53)(11,54,35)(12,36,55)(13,20,67)(14,68,17)(15,18,65)(16,66,19)(21,48,72)(22,69,45)(23,46,70)(24,71,47)(37,42,59)(38,60,43)(39,44,57)(40,58,41), (1,26,15)(2,16,27)(3,28,13)(4,14,25)(5,63,66)(6,67,64)(7,61,68)(8,65,62)(9,58,69)(10,70,59)(11,60,71)(12,72,57)(17,50,32)(18,29,51)(19,52,30)(20,31,49)(21,39,36)(22,33,40)(23,37,34)(24,35,38)(41,45,56)(42,53,46)(43,47,54)(44,55,48), (1,15,26)(2,16,27)(3,13,28)(4,14,25)(5,63,66)(6,64,67)(7,61,68)(8,62,65)(9,69,58)(10,70,59)(11,71,60)(12,72,57)(17,50,32)(18,51,29)(19,52,30)(20,49,31)(21,39,36)(22,40,33)(23,37,34)(24,38,35)(41,56,45)(42,53,46)(43,54,47)(44,55,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,38)(2,37)(3,40)(4,39)(5,10)(6,9)(7,12)(8,11)(13,22)(14,21)(15,24)(16,23)(17,48)(18,47)(19,46)(20,45)(25,36)(26,35)(27,34)(28,33)(29,43)(30,42)(31,41)(32,44)(49,56)(50,55)(51,54)(52,53)(57,61)(58,64)(59,63)(60,62)(65,71)(66,70)(67,69)(68,72)>;

G:=Group( (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,18)(10,19)(11,20)(12,17)(13,35)(14,36)(15,33)(16,34)(21,25)(22,26)(23,27)(24,28)(29,58)(30,59)(31,60)(32,57)(41,62)(42,63)(43,64)(44,61)(49,71)(50,72)(51,69)(52,70)(53,66)(54,67)(55,68)(56,65), (1,29,62)(2,63,30)(3,31,64)(4,61,32)(5,52,27)(6,28,49)(7,50,25)(8,26,51)(9,56,33)(10,34,53)(11,54,35)(12,36,55)(13,20,67)(14,68,17)(15,18,65)(16,66,19)(21,48,72)(22,69,45)(23,46,70)(24,71,47)(37,42,59)(38,60,43)(39,44,57)(40,58,41), (1,26,15)(2,16,27)(3,28,13)(4,14,25)(5,63,66)(6,67,64)(7,61,68)(8,65,62)(9,58,69)(10,70,59)(11,60,71)(12,72,57)(17,50,32)(18,29,51)(19,52,30)(20,31,49)(21,39,36)(22,33,40)(23,37,34)(24,35,38)(41,45,56)(42,53,46)(43,47,54)(44,55,48), (1,15,26)(2,16,27)(3,13,28)(4,14,25)(5,63,66)(6,64,67)(7,61,68)(8,62,65)(9,69,58)(10,70,59)(11,71,60)(12,72,57)(17,50,32)(18,51,29)(19,52,30)(20,49,31)(21,39,36)(22,40,33)(23,37,34)(24,38,35)(41,56,45)(42,53,46)(43,54,47)(44,55,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,38)(2,37)(3,40)(4,39)(5,10)(6,9)(7,12)(8,11)(13,22)(14,21)(15,24)(16,23)(17,48)(18,47)(19,46)(20,45)(25,36)(26,35)(27,34)(28,33)(29,43)(30,42)(31,41)(32,44)(49,56)(50,55)(51,54)(52,53)(57,61)(58,64)(59,63)(60,62)(65,71)(66,70)(67,69)(68,72) );

G=PermutationGroup([[(1,40),(2,37),(3,38),(4,39),(5,46),(6,47),(7,48),(8,45),(9,18),(10,19),(11,20),(12,17),(13,35),(14,36),(15,33),(16,34),(21,25),(22,26),(23,27),(24,28),(29,58),(30,59),(31,60),(32,57),(41,62),(42,63),(43,64),(44,61),(49,71),(50,72),(51,69),(52,70),(53,66),(54,67),(55,68),(56,65)], [(1,29,62),(2,63,30),(3,31,64),(4,61,32),(5,52,27),(6,28,49),(7,50,25),(8,26,51),(9,56,33),(10,34,53),(11,54,35),(12,36,55),(13,20,67),(14,68,17),(15,18,65),(16,66,19),(21,48,72),(22,69,45),(23,46,70),(24,71,47),(37,42,59),(38,60,43),(39,44,57),(40,58,41)], [(1,26,15),(2,16,27),(3,28,13),(4,14,25),(5,63,66),(6,67,64),(7,61,68),(8,65,62),(9,58,69),(10,70,59),(11,60,71),(12,72,57),(17,50,32),(18,29,51),(19,52,30),(20,31,49),(21,39,36),(22,33,40),(23,37,34),(24,35,38),(41,45,56),(42,53,46),(43,47,54),(44,55,48)], [(1,15,26),(2,16,27),(3,13,28),(4,14,25),(5,63,66),(6,64,67),(7,61,68),(8,62,65),(9,69,58),(10,70,59),(11,71,60),(12,72,57),(17,50,32),(18,51,29),(19,52,30),(20,49,31),(21,39,36),(22,40,33),(23,37,34),(24,38,35),(41,56,45),(42,53,46),(43,54,47),(44,55,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,38),(2,37),(3,40),(4,39),(5,10),(6,9),(7,12),(8,11),(13,22),(14,21),(15,24),(16,23),(17,48),(18,47),(19,46),(20,45),(25,36),(26,35),(27,34),(28,33),(29,43),(30,42),(31,41),(32,44),(49,56),(50,55),(51,54),(52,53),(57,61),(58,64),(59,63),(60,62),(65,71),(66,70),(67,69),(68,72)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3E3F3G3H3I4A4B6A···6O6P···6AA6AB···6AQ12A12B12C12D
order122222223···33333446···66···66···612121212
size11116654542···2444418182···24···46···618181818

66 irreducible representations

dim1111122222222444
type+++++++++++++++
imageC1C2C2C2C2S3S3D4D6D6D6D12C3⋊D4S32C3⋊D12C2×S32
kernelC2×C337D4C337D4C6×C3⋊Dic3S3×C62C22×C33⋊C2C2×C3⋊Dic3S3×C2×C6C32×C6C3⋊Dic3S3×C6C62C3×C6C3×C6C2×C6C6C6
# reps14111142285416484

Matrix representation of C2×C337D4 in GL8(ℤ)

10000000
01000000
00-100000
000-10000
0000-1000
00000-100
00000010
00000001
,
01000000
-1-1000000
00100000
00010000
00001000
00000100
000000-11
000000-10
,
10000000
01000000
00100000
00010000
00001000
00000100
0000000-1
0000001-1
,
10000000
01000000
00100000
00010000
0000-1100
0000-1000
00000010
00000001
,
-10000000
11000000
00010000
00-100000
0000-1000
00000-100
00000001
00000010
,
10000000
-1-1000000
00100000
000-10000
00000-100
0000-1000
00000001
00000010

G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C2×C337D4 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes_7D_4
% in TeX

G:=Group("C2xC3^3:7D4");
// GroupNames label

G:=SmallGroup(432,681);
// by ID

G=gap.SmallGroup(432,681);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,64,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f=b^-1,c*d=d*c,e*c*e^-1=f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽